logo

Summary

This report was generated with RLSeq v0.99.6.

Sample information

Sample name: RDIP-Seq +RNH1

Sample type: RDIP

Label: NEG

Genome: hg38

Time: Thu Oct 14 14:26:57 2021

Results

1. RLFS Analysis

Z-Score distribution

R-loop forming sequences (RLFS) were compared to the ranges in RDIP-Seq +RNH1 to measure enrichment. The resulting Z-score distribution is visualized below:

Note: for samples which map R-loop successfully, enrichment is expected. See representative examples for POS and NEG sample types here.

Details

Additional details

RLFS were derived across the genome using QmRLFS-finder.py. R-loop broad peaks were called with macs and then compared with RLFS using permTest from the regioneR R package. An empirical distribution of RLFS was generated using the circularRandomizeRegions method and compared to the peaks in order to calculate enrichment p value and zscore (effect size of enrichment). For additional detail, please refer to the RLSeq::analyzeRLFS documentation (link).

From this analysis, the empirically-determined p value was 0.009901 (with 100 permutations, the minimum possible p value was 0.009901). The enrichment z-score was 4.2791.


2. Sample classification

Predicted label for sample RDIP-Seq +RNH1 is “NEG” (i.e., poor R-loop mapping).

Details

Additional Details

To evaluate sample quality, a binary classifier was developed via the online-learning approach described in the RLSuite manuscript. The classifier evaluates features engineered from the RLFS Z score distribution, specifically, the following features:

Abbreviations: Z, Z-score distribution; ACF, autocorrelation function; FT, Fourier Transform.
feature description raw_value processed_value
Z1 mean of Z -1.0410735 3.7278413
Z2 variance of Z -1.2084578 56.2603406
Zacf1 mean of Z ACF -0.9787910 0.0046035
Zacf2 variance of Z ACF -1.2978184 5.2776535
ReW1 mean of FT of Z (real part) -0.5141733 4.2790722
ReW2 variance of FT of Z (real part) -1.2069132 769.0159302
ImW1 mean of FT of Z (imaginary part) -2.8001678 0.0000000
ImW2 variance of FT of Z (imaginary part) 1.0383560 211.7189408
ReWacf1 mean of FT of Z ACF (real part) -1.2202493 1.8505918
ReWacf2 variance of FT of Z ACF (real part) -1.2602061 59.5376294
ImWacf1 mean of FT of Z ACF (imaginary part) -0.5630640 0.0000000
ImWacf2 variance of FT of Z ACF (imaginary part) -1.2682520 45.3194174

From these features, classification was performed to derive a prediction (predicted label) regarding whether the sample mapped R-loops or not. In short, “POS” indicates any sample for which all the following are true:

  1. Criteria 1: The RLFS Permutation test P value is significant (p < .05)
  2. Criteria 2: The Z-score distribution middle is > 0.
  3. Criteria 3: The Z-score distribution middle is > the start and the end.
  4. Criteria 4: The model predicts a label of “POS”.

The criteria for RDIP-Seq +RNH1 are shown below:

Results from quality analysis of RDIP-Seq +RNH1
Criteria Result
  1. PVal Significant
TRUE
  1. ZApex > 0
TRUE
  1. ZApex > ZEdges
FALSE
  1. Predicted ‘POS’
FALSE

These results led to the final prediction: “NEG” (i.e., poor R-loop mapping).

For additional detail, please refer to the RLSeq::predictCondition documentation (link).


3. Feature enrichment test

Enrichment plots

The results were then visualized with the plotEnrichment() function:

CpG_Islands

Encode_CREs

G4Qpred

knownGene_RNAs

PolyA

Repeat_Masker

skewr

snoRNA_miRNA_scaRNA

Transcript_Features

tRNAs

Note: If < 200 peaks in user-supplied sample, ◇ will be missing from plots.

Summary table

Additional Details

Annotations were derived from a variety of sources and accessed using RLHub (unless custom annotations were supplied by the user). Detailed explanations of each database and type can be found here. The valr R package was implemented to test the enrichment of these features within the supplied ranges for RDIP-Seq +RNH1. For additional detail, please refer to the RLSeq::featureEnrich documentation (link).



4. Correlation analysis

Using the method described in Chedin et al. 2020, the inter-sample correlations between RDIP-Seq +RNH1 and the samples in RLBase were calculated. For additional detail, please refer to the RLSeq::corrAnalyze documentation (link).

In the resulting heatmap, RDIP-Seq +RNH1 is identified via the group annotation.

Note: In the plot legend (mode panel), misc includes the modes with < 12 samples: BisMapR, DREAM, DRIP-RNA-Seq, DRIPc-HBD, DRIVE, DRNA, m6A-DIP, RNH-CnR, RR-ChIP, S1-DRIP.


5. Gene Annotations

hg38 Gene annotations were downloaded from AnnotationHub and overlapped with R-loop ranges in RDIP-Seq +RNH1. For additional detail, please refer to the RLSeq::geneAnnotation documentation (link). The resulting gene table was then filtered for the top 2000 peaks (by p-adjusted value) and is observed here:


6. RL-Regions Test

RL-Regions are consensus R-loop sites derived from a meta-analysis of all high-confidence R-loop mapping samples in RLBase (see the RLSuite manuscript for a full description). The ranges supplied for RDIP-Seq +RNH1 were compared to the RL-Regions to determine the degree and significance of overlap. For additional detail, please refer to the RLSeq::rlRegionTest documentation (link).



Other

For more information about RLSeq please visit the package homepage here.

Note: if you use RLSeq in published research, please reference:

Miller et al., RLSeq, (2021), GitHub repository, Bishop-Laboratory/RLSeq

Session info

Session info
## R version 4.1.1 (2021-08-10)
## Platform: x86_64-pc-linux-gnu (64-bit)
## Running under: Ubuntu 20.04.3 LTS
## 
## Matrix products: default
## BLAS:   /usr/lib/x86_64-linux-gnu/blas/libblas.so.3.9.0
## LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.9.0
## 
## locale:
##  [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
##  [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
##  [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
##  [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
##  [9] LC_ADDRESS=C               LC_TELEPHONE=C            
## [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       
## 
## attached base packages:
## [1] stats     graphics  grDevices utils     datasets  methods   base     
## 
## other attached packages:
## [1] RLHub_0.99.4   RLSeq_0.99.6   dplyr_1.0.7    magrittr_2.0.1
## 
## loaded via a namespace (and not attached):
##   [1] circlize_0.4.13               AnnotationHub_3.1.5          
##   [3] BiocFileCache_2.1.1           systemfonts_1.0.2            
##   [5] plyr_1.8.6                    splines_4.1.1                
##   [7] BiocParallel_1.27.10          crosstalk_1.1.1              
##   [9] listenv_0.8.0                 GenomeInfoDb_1.29.8          
##  [11] ggplot2_3.3.5                 digest_0.6.28                
##  [13] yulab.utils_0.0.2             foreach_1.5.1                
##  [15] htmltools_0.5.2               magick_2.7.3                 
##  [17] fansi_0.5.0                   memoise_2.0.0                
##  [19] BSgenome_1.61.0               cluster_2.1.2                
##  [21] doParallel_1.0.16             ComplexHeatmap_2.9.4         
##  [23] recipes_0.1.16                globals_0.14.0               
##  [25] Biostrings_2.61.2             gower_0.2.2                  
##  [27] matrixStats_0.61.0            svglite_2.0.0                
##  [29] colorspace_2.0-2              rappdirs_0.3.3               
##  [31] blob_1.2.2                    rvest_1.0.1                  
##  [33] xfun_0.26                     crayon_1.4.1                 
##  [35] RCurl_1.98-1.5                jsonlite_1.7.2               
##  [37] survival_3.2-13               iterators_1.0.13             
##  [39] glue_1.4.2                    kableExtra_1.3.4             
##  [41] gtable_0.3.0                  ipred_0.9-12                 
##  [43] zlibbioc_1.39.0               XVector_0.33.0               
##  [45] webshot_0.5.2                 GetoptLong_1.0.5             
##  [47] DelayedArray_0.19.4           shape_1.4.6                  
##  [49] future.apply_1.8.1            BiocGenerics_0.39.2          
##  [51] scales_1.1.1                  futile.options_1.0.1         
##  [53] DBI_1.1.1                     Rcpp_1.0.7                   
##  [55] xtable_1.8-4                  viridisLite_0.4.0            
##  [57] clue_0.3-59                   gridGraphics_0.5-1           
##  [59] bit_4.0.4                     stats4_4.1.1                 
##  [61] lava_1.6.10                   prodlim_2019.11.13           
##  [63] DT_0.19                       htmlwidgets_1.5.4            
##  [65] httr_1.4.2                    RColorBrewer_1.1-2           
##  [67] ellipsis_0.3.2                pkgconfig_2.0.3              
##  [69] XML_3.99-0.8                  farver_2.1.0                 
##  [71] nnet_7.3-16                   sass_0.4.0                   
##  [73] dbplyr_2.1.1                  utf8_1.2.2                   
##  [75] caret_6.0-88                  ggplotify_0.1.0              
##  [77] AnnotationDbi_1.55.1          later_1.3.0                  
##  [79] tidyselect_1.1.1              labeling_0.4.2               
##  [81] rlang_0.4.11                  reshape2_1.4.4               
##  [83] munsell_0.5.0                 BiocVersion_3.14.0           
##  [85] tools_4.1.1                   cachem_1.0.6                 
##  [87] ggprism_1.0.3                 generics_0.1.0               
##  [89] RSQLite_2.2.8                 ExperimentHub_2.1.4          
##  [91] evaluate_0.14                 stringr_1.4.0                
##  [93] fastmap_1.1.0                 yaml_2.2.1                   
##  [95] ModelMetrics_1.2.2.2          knitr_1.34                   
##  [97] bit64_4.0.5                   purrr_0.3.4                  
##  [99] KEGGREST_1.33.0               pbapply_1.5-0                
## [101] future_1.22.1                 nlme_3.1-153                 
## [103] mime_0.12                     formatR_1.11                 
## [105] xml2_1.3.2                    caretEnsemble_2.0.1          
## [107] compiler_4.1.1                rstudioapi_0.13              
## [109] png_0.1-7                     interactiveDisplayBase_1.31.2
## [111] filelock_1.0.2                curl_4.3.2                   
## [113] tibble_3.1.4                  bslib_0.3.0                  
## [115] stringi_1.7.4                 futile.logger_1.4.3          
## [117] highr_0.9                     lattice_0.20-44              
## [119] Matrix_1.3-4                  vctrs_0.3.8                  
## [121] pillar_1.6.2                  lifecycle_1.0.1              
## [123] BiocManager_1.30.16           GlobalOptions_0.1.2          
## [125] jquerylib_0.1.4               data.table_1.14.0            
## [127] bitops_1.0-7                  httpuv_1.6.3                 
## [129] rtracklayer_1.53.1            GenomicRanges_1.45.0         
## [131] R6_2.5.1                      BiocIO_1.3.0                 
## [133] promises_1.2.0.1              gridExtra_2.3                
## [135] IRanges_2.27.2                parallelly_1.28.1            
## [137] codetools_0.2-18              lambda.r_1.2.4               
## [139] MASS_7.3-54                   assertthat_0.2.1             
## [141] SummarizedExperiment_1.23.4   rjson_0.2.20                 
## [143] withr_2.4.2                   regioneR_1.25.1              
## [145] GenomicAlignments_1.29.0      Rsamtools_2.9.1              
## [147] S4Vectors_0.31.3              GenomeInfoDbData_1.2.7       
## [149] parallel_4.1.1                VennDiagram_1.6.20           
## [151] grid_4.1.1                    rpart_4.1-15                 
## [153] timeDate_3043.102             class_7.3-19                 
## [155] rmarkdown_2.11                MatrixGenerics_1.5.4         
## [157] pROC_1.18.0                   shiny_1.7.0                  
## [159] Biobase_2.53.0                lubridate_1.7.10             
## [161] restfulr_0.0.13
 

RLSeq © 2021, Bishop Lab, UT Health San Antonio

RLSeq maintainer: Henry Miller

 

LS0tCnRpdGxlOiAiUkxTZXEgUmVwb3J0IgpzdWJ0aXRsZTogIjxzdHJvbmc+YHIgb2JqZWN0QG1ldGFkYXRhJHNhbXBsZU5hbWVgPC9zdHJvbmc+IgpkYXRlOiAiYHIgU3lzLkRhdGUoKWAiCm91dHB1dDogCiAgaHRtbF9kb2N1bWVudDoKICAgIGNzczogInJlcG9ydF9zdHlsZS5jc3MiCiAgICB0aGVtZTogImZsYXRseSIKICAgIHRvYzogdHJ1ZQogICAgdG9jX2Zsb2F0OgogICAgICBjb2xsYXBzZWQ6IGZhbHNlCiAgICAgIHNtb290aF9zY3JvbGw6IGZhbHNlIAogICAgdG9jX2RlcHRoOiAyCiAgICBjb2RlX2Rvd25sb2FkOiB0cnVlCiAgICBpbmNsdWRlczoKICAgICAgaW5faGVhZGVyOiAiaGVhZGVyLmh0bWwiCnBhcmFtczoKICBvYmplY3Q6ICJwbGFjZWhvbGRlciIKLS0tCgo8aW1nIHNyYz0ibG9nby5wbmciIGFsaWduPSJyaWdodCIgYWx0PSJsb2dvIiB3aWR0aD0iMjIwIiBzdHlsZSA9ICJib3JkZXI6IG5vbmU7IGZsb2F0OiByaWdodDsiPgoKYGBge3Igc2V0dXAsIGluY2x1ZGU9RkFMU0UsIGVjaG89RkFMU0V9CgojIFNldHVwIGNodW5rIG9wdGlvbnMKa25pdHI6Om9wdHNfY2h1bmskc2V0KAogIHdhcm5pbmcgPSBGQUxTRSwKICBtZXNzYWdlID0gRkFMU0UsCiAgY2FjaGUgPSBGQUxTRSwKICBlY2hvID0gRkFMU0UKKQoKIyBMaWJyYXJpZXMKbGlicmFyeShtYWdyaXR0cikKbGlicmFyeShkcGx5cikKbGlicmFyeShSTFNlcSkKCiMgRW5hYmxlCkRUOjpkYXRhdGFibGUobWF0cml4KCksIGV4dGVuc2lvbnM9IkJ1dHRvbnMiKQoKIyBXcmFuZ2xlIHJlc3VsdHMgYW5kIHRyaWdnZXIgY29uZGl0aW9uYWwgdGVtcGxhdGVzCm9iamVjdCA8LSBwYXJhbXMkb2JqZWN0CnJscmVzIDwtIG9iamVjdEBtZXRhZGF0YSRyZXN1bHRzCnJscmVzbHN0IDwtIGxhcHBseShzbG90TmFtZXMocmxyZXMpLCBmdW5jdGlvbihzbikgewogIHRyeUNhdGNoKHJscmVzdWx0KG9iamVjdCwgc24pLCBlcnJvciA9IGZ1bmN0aW9uKGUpIHtOVUxMfSkKfSkKbmFtZXMocmxyZXNsc3QpIDwtIHNsb3ROYW1lcyhybHJlcykKcmVzX29yZGVyIDwtIGMoCiAgInJsZnNSZXMiLCAicHJlZGljdFJlcyIsICJmZWF0dXJlRW5yaWNobWVudCIsIAogICJjb3JyZWxhdGlvbk1hdCIsICJnZW5lQW5ub1JlcyIsICJybFJlZ2lvblJlcyIKKQpmdW5jcyA8LSBjKAogICJhbmFseXplUkxGUyIsICJwcmVkaWN0Q29uZGl0aW9uIiwgImZlYXR1cmVFbnJpY2giLCAKICAiY29yckFuYWx5emUiLCAiZ2VuZUFubm90YXRpb24iLCAicmxSZWdpb25UZXN0IgopCm5hbWVzKHJlc19vcmRlcikgPC0gYygKICAiUkxGUyBBbmFseXNpcyIsIAogICJTYW1wbGUgY2xhc3NpZmljYXRpb24iLAogICJGZWF0dXJlIGVucmljaG1lbnQgdGVzdCIsCiAgIkNvcnJlbGF0aW9uIGFuYWx5c2lzIiwKICAiR2VuZSBBbm5vdGF0aW9ucyIsCiAgIlJMLVJlZ2lvbnMgVGVzdCIKKQpybHJlc2xzdCA8LSBybHJlc2xzdFtyZXNfb3JkZXJdCmlzbnVsbCA8LSB2YXBwbHkocmxyZXNsc3QsIGlzLm51bGwsIEZVTi5WQUxVRSA9IGxvZ2ljYWwoMSkpCmBgYAoKIyBTdW1tYXJ5CgpUaGlzIHJlcG9ydCB3YXMgZ2VuZXJhdGVkIHdpdGggKipSTFNlcSB2YHIgcGFja2FnZVZlcnNpb24oIlJMU2VxIilgKiouCgojIyMgU2FtcGxlIGluZm9ybWF0aW9uCgpTYW1wbGUgbmFtZTogPHN0cm9uZz5gciBvYmplY3RAbWV0YWRhdGEkc2FtcGxlTmFtZWA8L3N0cm9uZz4KClNhbXBsZSB0eXBlOiA8c3Ryb25nPmByIG9iamVjdEBtZXRhZGF0YSRtb2RlYDwvc3Ryb25nPgoKTGFiZWw6IDxzdHJvbmc+YHIgb2JqZWN0QG1ldGFkYXRhJGxhYmVsYDwvc3Ryb25nPgoKR2Vub21lOiA8c3Ryb25nPmByIEdlbm9tZUluZm9EYjo6Z2Vub21lKG9iamVjdClbMV1gPC9zdHJvbmc+CgpUaW1lOiA8c3Ryb25nPmByIGRhdGUoKWA8L3N0cm9uZz4KCiMjIyBSZXN1bHRzIHN1bW1hcnkKCmBgYHtyfQpkcGx5cjo6dGliYmxlKAogIFJlc3VsdCA9IHBhc3RlMCgiPGEgaHJlZj1cIiMiLCByZXNfb3JkZXIsIlwiPiIsIG5hbWVzKHJlc19vcmRlciksICI8L2E+IiksCiAgQXZhaWxhYmxlID0gISBpc251bGwKKSAlPiUKICBrYWJsZUV4dHJhOjprYmwoZXNjYXBlID0gRkFMU0UpICU+JQogIGthYmxlRXh0cmE6OmthYmxlX21hdGVyaWFsKGMoInN0cmlwZWQiLCAiaG92ZXIiKSkgJT4lCiAga2FibGVFeHRyYTo6Y29sdW1uX3NwZWMoCiAgICBjb2x1bW4gPSAxLAogICAgYm9sZCA9IFRSVUUKICApICU+JQogIGthYmxlRXh0cmE6OmNvbHVtbl9zcGVjKAogICAgY29sdW1uID0gMiwKICAgIGNvbG9yID0gaWZlbHNlKCEgaXNudWxsLCAiYmxhY2siLCAiZ3JleSIpLAogICAgYm9sZCA9ICEgaXNudWxsCiAgKSAKYGBgCgojIFJlc3VsdHMKCmBgYHtyIGNoaWxkUk1ELCByZXN1bHRzPSdhc2lzJ30Kcm1kbHN0IDwtIGxhcHBseSgKICAgIHNlcShyZXNfb3JkZXIpLAogICAgZnVuY3Rpb24oaSkgewogICAgICAgIHJlc0FuY2hvciA8LSByZXNfb3JkZXJbaV0KICAgICAgICBmdW5jIDwtIGZ1bmNzW2ldCiAgICAgICAgaWYgKGlzbnVsbFtpXSkgewogICAgICAgICAgICBrbml0cjo6a25pdF9jaGlsZCgKICAgICAgICAgICAgICAgIHRleHQ9YygKICAgICAgICAgICAgICAgICAgICAnIyMgYHIgaWAuIGByIG5hbWVzKHJlc0FuY2hvcilgIHsjYHIgcmVzQW5jaG9yYH0nLAogICAgICAgICAgICAgICAgICAgICcnLAogICAgICAgICAgICAgICAgICAgIHBhc3RlMCgnKlVuYXZhaWxhYmxlKi4gUnVuIGAnLCBmdW5jLAogICAgICAgICAgICAgICAgICAgICAgICAgICAnKClgIGFuZCB0aGVuIGByZXBvcnQoKWAgYWdhaW4gdG8gdmlldyB0aGlzIHJlc3VsdC4nKSwKICAgICAgICAgICAgICAgICAgICAnJywKICAgICAgICAgICAgICAgICAgICAnKioqJywKICAgICAgICAgICAgICAgICAgICAnJwogICAgICAgICAgICAgICAgKSwKICAgICAgICAgICAgICAgIGVudmlyID0gZW52aXJvbm1lbnQoKSwgCiAgICAgICAgICAgICAgICBxdWlldCA9IFRSVUUKICAgICAgICAgICAgKQogICAgICAgIH0gZWxzZSB7CiAgICAgICAgICAgIGtuaXRyOjprbml0X2NoaWxkKAogICAgICAgICAgICAgICAgc3lzdGVtLmZpbGUoCiAgICAgICAgICAgICAgICAgICAgIlJtZCIsCiAgICAgICAgICAgICAgICAgICAgcGFzdGUwKHJlc0FuY2hvciwgIi5SbWQiKSwKICAgICAgICAgICAgICAgICAgICBwYWNrYWdlID0gIlJMU2VxIgogICAgICAgICAgICAgICAgKSwgCiAgICAgICAgICAgICAgICBlbnZpciA9IGVudmlyb25tZW50KCksIAogICAgICAgICAgICAgICAgcXVpZXQgPSBUUlVFCiAgICAgICAgICAgICkKICAgICAgICB9CiAgICB9CikKY2F0KHVubGlzdChybWRsc3QpLCBzZXAgPSAiXG4iKQpgYGAKCiMgT3RoZXIKCj4gRm9yIG1vcmUgaW5mb3JtYXRpb24gYWJvdXQgKlJMU2VxKiBwbGVhc2UgdmlzaXQgdGhlIHBhY2thZ2UgaG9tZXBhZ2UgW2hlcmVdKGh0dHBzOi8vZ2l0aHViLmNvbS9CaXNob3AtTGFib3JhdG9yeS9STFNlcSl7dGFyZ2V0PSJfYmxhbmsifS4KCioqTm90ZSoqOiBpZiB5b3UgdXNlICpSTFNlcSogaW4gcHVibGlzaGVkIHJlc2VhcmNoLCBwbGVhc2UgcmVmZXJlbmNlOgoKPiBNaWxsZXIgZXQgYWwuLCBSTFNlcSwgKDIwMjEpLCBHaXRIdWIgcmVwb3NpdG9yeSwgW0Jpc2hvcC1MYWJvcmF0b3J5L1JMU2VxXShodHRwczovL2dpdGh1Yi5jb20vQmlzaG9wLUxhYm9yYXRvcnkvUkxTZXEpe3RhcmdldD0iX2JsYW5rIn0KCiMjIFNlc3Npb24gaW5mbwoKPGRldGFpbHM+Cgo8c3VtbWFyeT5TZXNzaW9uIGluZm88L3N1bW1hcnk+CgpgYGB7cn0Kc2Vzc2lvbkluZm8oKQpgYGAKCjwvZGV0YWlscz4KCiZuYnNwOwo8aHIgLz4KPHAgc3R5bGU9InRleHQtYWxpZ246IGNlbnRlcjsiPlJMU2VxIMKpIGByIGZvcm1hdChTeXMuRGF0ZSgpLCAiJVkiKWAsIDxhIGhyZWY9Imh0dHBzOi8vZ2NjcmkuYmlzaG9wLWxhYi51dGhzY3NhLmVkdS8iICB0YXJnZXQ9Il9ibGFuayI+QmlzaG9wIExhYjwvYT4sIFVUIEhlYWx0aCBTYW4gQW50b25pbzwvcD4KPHAgc3R5bGU9InRleHQtYWxpZ246IGNlbnRlcjsiPlJMU2VxIG1haW50YWluZXI6IDxzcGFuIHN0eWxlPSJjb2xvcjogIzgwODA4MDsiPjxlbT48YSBocmVmPSJtYWlsdG86bWlsbGVyaDFAdXRoc2NzYS5lZHUiPkhlbnJ5IE1pbGxlcjwvYT48L2VtPjwvc3Bhbj48L3A+CgombmJzcDsK